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Where does the data come from?

e Air Quality System (AQS) DataMart from the EPA
e Measurements of criteria pollutants
»  Ambient air pollution measurements from
thousands of state and local monitoring locations
»  Particulate matter, sulfur dioxide, carbon
monoxide, nitrogen dioxide, ozone, air toxics, lead
»  Hourly, 8-hour, daily, and annual concentrations
e Used by research, regulatory, and healthcare

research communities

»  Clean Air Act compliance




Where does the data come from?

CENTERS FOR DISEASE
CONTROL AND PREVENTION

National Environmental Public Health Data tracking
program from the CDC

Data from a network of partners
»  National organizations, federal agencies, and
fellowship participants

Health and environmental data from city, state, and

national sources
»  Air pollutant concentrations at county- and state-level
resolutions
»  Prevalence of health conditions at county- and state-

level resolutions

Data available from 1999 - 2016



A look at the EPA data

e 1.6 million rows of annual summary data

e Data can be roughly broken into:

»  Station information
» Parameter information

»  Observation information




How is the EPA data collected?

e 5624 air monitoring locations in the
contiguous US

e 1052 distinct parameters measured and
recorded

e Air monitoring locations can measure one

or more parameters




Observations from raw EPA data

Number of distinct Air Quality Stations per million people Number of distinct Air Quality Stations Number of distinct Air Quality Stations per 1000 square miles
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Figure 1. Number of Air Quality Stations per state does not seem to be dependent on population nor square mileage



Observations from raw EPA data

Number of new Air Quality Stations per year

Total number of Air Quality Stations per year
with at least one complete observation
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Figure 2. Initial analysis of the AQS dataset from the



Data Pre-Processing

Selection

e Filtered out
variables with more
than 50% missing
values.

e Removed
duplicates.

Preprocessing

Tidy dataset:

pivoted variables.

Merged datasets:

EPA + CDC

Partition Dataset:
80% training
20% testing

Transformation

Imputed missing
values.

Log-transformed
both target and
explanatory
variables.



Exploratory Data Analysis - PM, .

2000 PM2.5 Concentrations by County 2016 PM2.5 Concentrations by County
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Figure 3. Comparison of particulate matter concentrations by county in 2000 and 2016.
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Exploratory Data Analysis - PM, .

PM, s Concentrations Decrease over time
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Figure 4. PM, . concentrations in the areas with the highest overall concentrations from 1999 to 2016.



State

Exploratory Data Analysis - PM, . and Ozone

Top 15 States with the Most Days above PM, s Regulations

Top 15 States with the Most Days above Ozone Regulations
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Figure 5. States with the most days above PM, . and Ozone regulation in 2000 and 2016.
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Exploratory Data Analysis - PM, .

Reduction Percent of PM 2.5 Minimum Mortality Benﬁflit Maximum Mortality Ben!ef‘it Average Mortality Benﬁflit Median Mortality Benﬁflit
<chr> <dbl> <dbl> <dbl> <dbl>
Reduction Percent: 10% Reduction 0 679 4.785960 1
Reduction Percent: 15% Reduction 0 958 7.155908 2
Reduction Percent: 20% Reduction 0 972 9.435453 3
Reduction Percent: 25% Reduction 0 942 11599772 4
Reduction Percent: 5% Reduction 0 341 2.366039 1

Table 2. PM, . Mortality Benefit Table.
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Mexico Figure 6. PM, . Mortality Benefit Map.



Top 5 Most Affected States

California -

New York -

Pennsylvania -

Texas -

Ohio-

o -

50000 100000
Reduction in Deaths

Figure 7. Top states impacted by reducing PM, . concentrations.
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Figure 8. Benefits of reducing PM, . concentrations by state.



Reductin in Deaths
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Figure 9. Mortality benefits of decreasing PM, . over time.
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Exploratory Data Analysis - Asthma
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Figure 10. Asthma Prevalence by Age Group and Year.



Exploratory Data Analysis - Asthma
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Modeling

Objective

Model Asthma and COPD health outcomes based on air quality and weather

data and identify which of these variables are most important for predicting:

e Asthma Emergency Department Visits
e COPD Hospitalizations
e COPD Mortality
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Modeling - Missing Value Imputation
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Density Plot of Observed (blue) vs Imputed (red) values.
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Figure 12. Observed versus imputed values for predictor variables.

Missing values were
imputed using
Conditional Multiple
Imputation with the
MICE package.

Here blue represents
the observed data and
red shows the imputed
data.
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Boruta is a feature ranking

and selection algorithm
based on a random forests

rank all variables by
algorithm.

We used Boruta package to

importance.
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Figure 13. Importance of each predictor variable.



Modeling - Asthma ER Visits

Variable Importance Using Stepwise Backward
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Figure 14. Importance of variables using stepwise backward selection.



Modeling - COPD Hospitalizations

Variable Importance Using Stepwise Backward
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Modeling - COPD Mortality

Variable Importance Using Stepwise Backward . . | . .
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Results & Conclusions

Top 3 Most Important Variables After Adjusting for State and Normalized RMSE

Asthma ER Visits

1. Ambient Pressure 50th 2. Ozone SD 3. Ambient Temperature SD

RMSE  Rsquared

1.3387 0.4079

COPD Hospitalizations

1. PM2.5 Local Conditions 50th 2. Mean Ambient Pressure 3. Ozone SD

RMSE Rsquared

1.6968 0.3275

COPD Mortality

1. Ambient Pressure 50th 2. Mean Ozone 3. Mean Temperature

RMSE Rsquared

1.2450  0.2021
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Questions?




References

Environmental Public Health Data Tracking Network, by the Center for Disease Control:
Link to data: https://ephtracking.cdc.gov/DataExplorer/#/
Link to background information: https://www.cdc.gov/nceh/tracking/about.htm

Historical Air Quality Data from the Air Quality System, by the Environmental Protection Agency:
Link to data: https://www.kaggle.com/epa/epa-historical-air-quality
Link to background information: https://ags.epa.gov/agsweb/documents/About_ags_data.html
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